Namngivna Entity Recognition Services

Human Powered Entity Extraction / Recognition för att träna NLP-modeller

Lås upp viktig information i ostrukturerad data med enhetsextraktion och igenkänning

Namngivna Entity Recognition Services

Utvalda klienter

Stärka team för att bygga världsledande AI-produkter.

amason
Google
Microsoft
Cogknit
Det finns en ökande efterfrågan på att analysera ostrukturerad data för att avslöja oupptäckta insikter.

Titta på hastigheten med vilken data genereras; varav 80 % är ostrukturerad, finns det ett behov av att använda nästa generations teknologier för att analysera data effektivt och få meningsfulla insikter för att fatta bättre beslut. Named Entity Recognition (NER) i NLP fokuserar främst på att bearbeta ostrukturerad data och klassificera dessa namngivna enheter i fördefinierade kategorier.

IDC, analytikerföretag:

Den globala installerade basen av lagringskapacitet kommer att nå 11.7 zettabyte in 2023

IBM, Gartner och IDC:

80% av data runt om i världen är ostrukturerad, vilket gör den föråldrad och oanvändbar. 

Verklig lösning

Analysera data för att upptäcka meningsfulla insikter för att träna NLP-modeller med NER

Korrekt organiserad och exakt kommenterad data är kärnan i det som får AI/ML-modeller att fungera. Shaip Named Entity Recognition är utformad för att tillåta organisationer att låsa upp viktig information i ostrukturerad data och låter dig upptäcka relationer mellan enheter från finansiella rapporter, försäkringsdokument, recensioner, läkaranteckningar etc. Med rik erfarenhet av naturlig språkbehandling och lingvistik är vi väl rustade för att leverera domänspecifika insikter och hantera anteckningsprojekt av alla skala. 

Namngiven entitetsigenkänning (Ner)

NER närmar sig

Det primära målet med en NER-modell är att märka eller tagga enheter i textdokument och kategorisera dem för djupinlärning. Följande tre tillvägagångssätt används i allmänhet för detta ändamål. Du kan dock välja att kombinera en eller flera metoder också. De olika metoderna för att skapa NER-system är:

Ordboksbaserat
system

Ordboksbaserade system
Detta är kanske den mest enkla och grundläggande NER-metoden. Den kommer att använda en ordbok med många ord, synonymer och ordförråd. Systemet kommer att kontrollera om en viss enhet som finns i texten också är tillgänglig i vokabulären. Genom att använda en strängmatchningsalgoritm utförs en korskontroll av entiteter. Thär finns ett behov av att ständigt uppgradera ordförrådsdataset för att NER-modellen ska fungera effektivt.

Regelbaserad
system

Regelbaserade system
Informationsextraktion baserat på en uppsättning förinställda regler, som är

Mönsterbaserade regler – Som namnet antyder följer en mönsterbaserad regel ett morfologiskt mönster eller en sträng av ord som används i dokumentet.

Kontextbaserade regler – Kontextbaserade regler beror på betydelsen eller sammanhanget för ordet i dokumentet.

Maskininlärningsbaserade system

Machine Learning-baserade system
I maskininlärningsbaserade system används statistisk modellering för att upptäcka enheter. En funktionsbaserad representation av textdokumentet används i detta tillvägagångssätt. Du kan övervinna flera nackdelar med de två första tillvägagångssätten eftersom modellen kan känna igen entitetstyper trots små variationer i deras stavningar för djupinlärning.

Hur vi kan hjälpa

  • General NER
  • Medicinsk NER
  • PII-anteckning
  • PHI-anteckning
  • Nyckelfraskommentar
  • Incidentkommentar

Tillämpningar av NER

  • Effektiviserad kundsupport
  • Effektiva mänskliga resurser
  • Förenklad innehållsklassificering
  • Förbättra patientvården
  • Optimera sökmotorer
  • Korrekt innehållsrekommendation

Användningsfall

  • Informationsextraktion och igenkänningssystem
  • Fråge-svar-system
  • Maskinöversättningssystem
  • Automatiska summeringssystem
  • Semantisk kommentar

NER-anteckningsprocess

NER-kommentarprocessen skiljer sig i allmänhet från kundens krav, men den innefattar huvudsakligen:

Domänkompetens

Fas 1: Teknisk domänexpertis (förstå projektets omfattning och riktlinjer för kommentarer)

Utbildningsresurser

Fas 2: Utbilda lämpliga resurser för projektet

Qa dokument

Fas 3: Återkopplingscykel och QA för de kommenterade dokumenten

Vår expertis

1. Named Entity Recognition (NER) 

Named Entity Recognition in Machine Learning är en del av Natural Language Processing. Det primära syftet med NER är att bearbeta strukturerad och ostrukturerad data och klassificera dessa namngivna enheter i fördefinierade kategorier. Några vanliga kategorier inkluderar namn, plats, företag, tid, monetära värden, evenemang och mer.

1.1 Allmän domän

Identifiering av personer, plats, organisation etc. i den allmänna domänen

Försäkringsdomän

1.2 Försäkringsdomän 

Det innebär utvinning av enheter i försäkringshandlingar som t.ex 

  • Försäkringsbelopp
  • Ersättningsgränser/policybegränsningar
  • Uppskattningar såsom lönerum, omsättning, avgiftsinkomster, export/import
  • Fordons scheman
  • Policyförlängningar och inre gränser 

1.3 Klinisk domän / Medicinsk NER

Identifiering av problem, anatomisk struktur, medicin, procedur från journaler såsom EPJ; är vanligtvis ostrukturerade till sin natur och kräver ytterligare bearbetning för att extrahera strukturerad information. Detta är ofta komplext och kräver att domänexperter från sjukvården extraherar relevanta enheter.

Nyckelfraskommentar (Kp)

2. Nyckelfraskommentar (KP)

Den identifierar en diskret substantivfras i en text. En substantivfras kan vara antingen enkel (t.ex. ett huvudord som substantiv, egennamn eller pronomen) eller komplex (t.ex. en substantivfras som har ett huvudord tillsammans med tillhörande modifierare)

3. PII-anteckning

PII avser personligt identifierbar information. Denna uppgift involverar anteckningar av alla nyckelidentifierare som kan relatera tillbaka till en persons identitet.

Pii-anteckning
Phi-anteckning

4. PHI-anteckning

PHI hänvisar till Skyddad hälsoinformation. Denna uppgift innefattar anteckning av 18 nyckelpatientidentifierare som identifierats under HIPAA, för att avidentifiera en patientjournal/identitet.

5. Incidentkommentar

Identifiering av information som vem, vad, när, var om en händelse t.ex. Attack, kidnappning, investering etc. Denna anteckningsprocess har följande steg:

Enhetsidentifiering

5.1. Enhetsidentifiering (t.ex. person, plats, organisation, etc.)

Enhetsidentifiering

5.2. Identifiering av ord som anger huvudhändelsen (dvs triggerord)

Enhetsidentifiering

5.3. Identifiering av relation mellan en trigger och entitetstyper

Skäl att välja Shaip som din pålitliga NER Training Dataset Partner

Personer

Personer

Dedikerade och utbildade team:

  • 30,000+ medarbetare för dataskapande, märkning och kvalitetssäkring
  • Godkänd projektledningsteam
  • Erfaren produktutvecklingsteam
  • Talent Pool Sourcing & Onboarding Team
Processen

Processen

Högsta processeffektivitet säkerställs med:

  • Robust 6 Sigma Stage-Gate-process
  • Ett dedikerat team med 6 Sigma-svarta bälten - Viktiga processägare och kvalitetskrav
  • Kontinuerlig förbättring och återkopplingsslinga
plattform

plattform

Den patenterade plattformen erbjuder fördelar:

  • Webbaserad end-to-end-plattform
  • Oklanderlig kvalitet
  • Snabbare TAT
  • Sömlös leverans

Varför Shaip?

Dediker team

Det uppskattas att dataforskare spenderar över 80 % av sin tid med att förbereda data. Med outsourcing kan ditt team fokusera på utvecklingen av robusta algoritmer, vilket överlåter den tråkiga delen av att samla in de namngivna datauppsättningarna för enhetsigenkänning till oss.

Skalbarhet

En genomsnittlig ML-modell skulle kräva insamling och taggning av stora bitar av namngivna datauppsättningar, vilket kräver att företag drar in resurser från andra team. Med partners som oss erbjuder vi domänexperter som enkelt kan skalas upp i takt med att ditt företag växer.

Bättre kvalité

Dedikerade domänsexperter som kommenterar dag in och dag ut kommer-vilken dag som helst-att göra ett överlägset jobb jämfört med ett team, som måste rymma annoteringsuppgifter i sina upptagna scheman. Det behöver inte sägas att det ger bättre utdata.

Operativ Excellence

Vår beprövade process för datakvalitetssäkring, teknologivalideringar och flera stadier av QA, hjälper oss att leverera den bästa kvaliteten i klassen som ofta överträffar förväntningarna.

Säkerhet med integritet

Vi är certifierade för att upprätthålla de högsta standarderna för datasäkerhet med integritet samtidigt som vi arbetar med våra kunder för att säkerställa konfidentialitet

konkurrenskraftig prissättning

Som experter på att kurera, utbilda och leda team av kvalificerade arbetare kan vi säkerställa att projekt levereras inom budget.

Tillgänglighet & leverans

Hög nätverksupptid och leverans i tid av data, tjänster och lösningar.

Global arbetskraft

Med en pool av resurser på land och till havs kan vi bygga och skala team efter behov för olika användningsfall.

Människor, process och plattform

Med kombinationen av en global arbetsstyrka, robust plattform och operativa processer designade av 6 sigma black-belts, hjälper Shaip till att lansera de mest utmanande AI-initiativen.

Shaip Kontakta oss

Vill du bygga din egen NER-träningsdata?

Kontakta oss nu för att lära dig hur vi kan samla in en anpassad NER-datauppsättning för din unika AI/ML-lösning

  • Genom att registrera mig godkänner jag Shaip Integritetspolicy och Användarvillkor och ge mitt samtycke till att ta emot B2B marknadsföringskommunikation från Shaip.

Named Entity Recognition är en del av Natural Language Processing. Det primära syftet med NER är att bearbeta strukturerad och ostrukturerad data och klassificera dessa namngivna enheter i fördefinierade kategorier. Några vanliga kategorier inkluderar namn, plats, företag, tid, monetära värden, evenemang och mer.

I ett nötskal handlar NER om:

Namngiven enhetsigenkänning/detektion – Identifiera ett ord eller en serie ord i ett dokument.

Namngiven enhetsklassificering – Klassificering av alla upptäckta enheter i fördefinierade kategorier.

Natural Language-behandling hjälper till att utveckla intelligenta maskiner som kan extrahera mening ur tal och text. Machine Learning hjälper dessa intelligenta system att fortsätta lära sig genom att träna på stora mängder naturliga språkdata. Generellt består NLP av tre huvudkategorier:

Förstå språkets struktur och regler – Syntax

Härleda betydelsen av ord, text och tal och identifiera deras relationer – Semantik

Identifiera och känna igen talade ord och omvandla dem till text – Tal

Några av de vanligaste exemplen på en förutbestämd enhetskategorisering är:

Person: Michael Jackson, Oprah Winfrey, Barack Obama, Susan Sarandon

Plats: Kanada, Honolulu, Bangkok, Brasilien, Cambridge

Organisation: Samsung, Disney, Yale University, Google

Tid: 15.35, 12,

De olika metoderna för att skapa NER-system är:

Ordboksbaserade system

Regelbaserade system

Maskininlärningsbaserade system

Effektiviserad kundsupport

Effektiva mänskliga resurser

Förenklad innehållsklassificering

Optimera sökmotorer

Korrekt innehållsrekommendation